首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   307篇
  免费   13篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   2篇
  2018年   7篇
  2016年   6篇
  2015年   10篇
  2014年   8篇
  2013年   25篇
  2012年   23篇
  2011年   18篇
  2010年   8篇
  2009年   20篇
  2008年   28篇
  2007年   23篇
  2006年   21篇
  2005年   23篇
  2004年   19篇
  2003年   19篇
  2002年   16篇
  2001年   6篇
  2000年   3篇
  1999年   5篇
  1998年   1篇
  1997年   3篇
  1995年   2篇
  1994年   3篇
  1993年   4篇
  1992年   1篇
  1991年   2篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1984年   1篇
  1977年   1篇
  1974年   1篇
  1969年   1篇
排序方式: 共有320条查询结果,搜索用时 15 毫秒
101.
Kuroiwa  Tsuneyoshi  Ohnuma  Mio  Imoto  Yuuta  Yagisawa  Fumi  Misumi  Osami  Nagata  Noriko  Kuroiwa  Haruko 《Protoplasma》2020,257(4):1069-1078
Protoplasma - Primary plastids originated from a free-living cyanobacterial ancestor and possess their own genomes—probably a few DNA copies. These genomes, which are organized in centrally...  相似文献   
102.
Immunostimulatory effects of collagen from jellyfish in vivo   总被引:2,自引:0,他引:2  
We focused on the biological activity of the collagen extracts obtained from the giant edible jellyfish, Nemopilema nomurai. Jellyfish collagen extracts stimulates the production of immunoglobulins (Igs) and cytokines by human hybridoma cells and human peripheral blood lymphocytes. Therefore, we examined the immunoregulatory function of jellyfish collagen extracts in mice. Intake of jellyfish collagen extracts facilitated the Ig production activity of lymphocytes from spleen and Peyer's patch. Furthermore, the levels of Igs in the serum clearly increased after the administration of jellyfish collagen extracts. Intake of bovine collagen from Achilles' tendon also activated lymphocytes activity in mice. The activity of total and antigen-specific Ig production in splenocytes from OVA-challenged mice was also enhanced by collagen intake. However, the total and OVA-specific IgE levels in the serum were not affected by the collagen intake. These results suggested that jellyfish collagen extracts stimulates an immune response in vivo, without inducing allergic complications.  相似文献   
103.
GTP-bound forms of Ras family small GTPases exhibit dynamic equilibrium between two interconverting conformations, "inactive" state 1 and "active" state 2. A great variation exists in their state distribution; H-Ras mainly adopts state 2, whereas M-Ras predominantly adopts state 1. Our previous studies based on comparison of crystal structures representing state 1 and state 2 revealed the importance of the hydrogen-bonding interactions of two flexible effector-interacting regions, switch I and switch II, with the γ-phosphate of GTP in establishing state 2 conformation. However, failure to obtain both state structures from a single protein hampered further analysis of state transition mechanisms. Here, we succeed in solving two crystal structures corresponding to state 1 and state 2 from a single Ras polypeptide, M-RasD41E, carrying an H-Ras-type substitution in residue 41, immediately preceding switch I, in complex with guanosine 5'-(β,γ-imido)triphosphate. Comparison among the two structures and other state 1 and state 2 structures of H-Ras/M-Ras reveal two new structural features playing critical roles in state dynamics; interaction of residues 31/41 (H-Ras/M-Ras) with residues 29/39 and 30/40, which induces a conformational change of switch I favoring its interaction with the γ-phosphate, and the hydrogen-bonding interaction of switch II with its neighboring α-helix, α3-helix, which induces a conformational change of switch II favoring its interaction with the γ-phosphate. The importance of the latter interaction is proved by mutational analyses of the residues involved in hydrogen bonding. These results define the two novel functional regions playing critical roles during state transition.  相似文献   
104.
The synthesis of bacterial polyhydroxyalkanoates (PHA) is very much dependent on the expression and activity of a key enzyme, PHA synthase (PhaC). Many efforts are being pursued to enhance the activity and broaden the substrate specificity of PhaC. Here, we report the identification of a highly active wild-type PhaC belonging to the recently isolated Chromobacterium sp. USM2 (PhaC(Cs)). PhaC(Cs) showed the ability to utilize 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV), and 3-hydroxyhexanoate (3HHx) monomers in PHA biosynthesis. An in vitro assay of recombinant PhaC(Cs) expressed in Escherichia coli showed that its polymerization of 3-hydroxybutyryl-coenzyme A activity was nearly 8-fold higher (2,462 ± 80 U/g) than that of the synthase from the model strain C. necator (307 ± 24 U/g). Specific activity using a Strep2-tagged, purified PhaC(Cs) was 238 ± 98 U/mg, almost 5-fold higher than findings of previous studies using purified PhaC from C. necator. Efficient poly(3-hydroxybutyrate) [P(3HB)] accumulation in Escherichia coli expressing PhaC(Cs) of up to 76 ± 2 weight percent was observed within 24 h of cultivation. To date, this is the highest activity reported for a purified PHA synthase. PhaC(Cs) is a naturally occurring, highly active PHA synthase with superior polymerizing ability.  相似文献   
105.
Six acylated delphinidin glycosides (pigments 1-6) and one acylated kaempferol glycoside (pigment 9) were isolated from the blue flowers of cape stock (Heliophila coronopifolia) in Brassicaceae along with two known acylated cyanidin glycosides (pigments 7 and 8). Pigments 1-8, based on 3-sambubioside-5-glucosides of delphinidin and cyanidin, were acylated with hydroxycinnamic acids at 3-glycosyl residues of anthocyanidins. Using spectroscopic and chemical methods, the structures of pigments 1, 2, 5, and 6 were determined to be: delphinidin 3-O-[2-O-(β-xylopyranosyl)-6-O-(acyl)-β-glucopyranoside]-5-O-[6-O-(malonyl)-β-glucopyranoside], in which acyl moieties were, respectively, cis-p-coumaric acid for pigment 1, trans-caffeic acid for pigment 2, trans-p-coumaric acid for pigment 5 (a main pigment) and trans-ferulic acid for pigment 6, respectively. Moreover, the structure of pigments 3 and 4 were elucidated, respectively, as a demalonyl pigment 5 and a demalonyl pigment 6. Two known anthocyanins (pigments 7 and 8) were identified to be cyanidin 3-(6-p-coumaroyl-sambubioside)-5-(6-malonyl-glucoside) for pigment 7 and cyanidin 3-(6-feruloyl-sambubioside)-5-(6-malonyl-glucoside) for pigment 8 as minor anthocyanin pigments. A flavonol pigment (pigment 9) was isolated from its flowers and determined to be kaempferol 3-O-[6-O-(trans-feruloyl)-β-glucopyranoside]-7-O-cellobioside-4′-O-glucopyranoside as the main flavonol pigment.On the visible absorption spectral curve of the fresh blue petals of this plant and its petal pressed juice in the pH 5.0 buffer solution, three characteristic absorption maxima were observed at 546, 583 and 635 nm. However, the absorption curve of pigment 5 (a main anthocyanin in its flower) exhibited only one maximum at 569 nm in the pH 5.0 buffer solution, and violet color. The color of pigment 5 was observed to be very unstable in the pH 5.0 solution and soon decayed. In the pH 5.0 solution, the violet color of pigment 5 was restored as pure blue color by addition of pigment 9 (a main flavonol in this flower) like its fresh flower, and its blue solution exhibited the same three maxima at 546, 583 and 635 nm. On the other hand, the violet color of pigment 5 in the pH 5.0 buffer solution was not restored as pure blue color by addition of deacyl pigment 9 or rutin (a typical flower copigment). It is particularly interesting that, a blue anthocyanin-flavonol complex was extracted from the blue flowers of this plant with H2O or 5% HOAc solution as a dark blue powder. This complex exhibited the same absorption maxima at 546, 583 and 635 nm in the pH 5.0 buffer solution. Analysis of FAB mass measurement established that this blue anthocyanin-flavonol complex was composed of one molecule each of pigment 5 and pigment 9, exhibiting a molecular ion [M+1] + at 2102 m/z (C93H105O55 calc. 2101.542). However, this blue complex is extremely unstable in acid solution. It really dissociates into pigment 5 and pigment 9.  相似文献   
106.
Anaphase can be categorized into the two subphases of anaphase A and B, but anaphase B has not been clearly described in higher plant cells. In this study, we time-sequentially followed the dynamics of chromosome segregation and spindle elongation in tobacco BY-2 cells using histone-red fluorescent protein (RFP) and green fluorescent protein (GFP)-tubulin, respectively. Construction of kymographs and determination of the positions of chromosomes and spindle edges by image processing revealed that anaphase B contributed to about 40% of the chromosome separation in distance, which is comparable with that in animal cells. These results suggest that higher plant cells potentially possess the process of anaphase B.  相似文献   
107.
In the skin of zebrafish embryo, the vacuolar H(+)-ATPase (V-ATPase, H(+) pump) distributed mainly in the apical membrane of H(+)-pump-rich cells, which pump internal acid out of the embryo and function similarly to acid-secreting intercalated cells in mammalian kidney. In addition to acid excretion, the electrogenic H(+) efflux via the H(+)-ATPases in the gill apical membrane of freshwater fish was proposed to act as a driving force for Na(+) entry through the apical Na(+) channels. However, convincing molecular physiological evidence in vivo for this model is still lacking. In this study, we used morpholino-modified antisense oligonucleotides to knockdown the gene product of H(+)-ATPase subunit A (atp6v1a) and examined the phenotype of the mutants. The H(+)-ATPase knockdown embryos revealed several abnormalities, including suppression of acid-secretion from skin, growth retardation, trunk deformation, and loss of internal Ca(2+) and Na(+). This finding reveals the critical role of H(+)-ATPase in embryonic acid -secretion and ion balance, as well.  相似文献   
108.
Nitrogen is one of the most important elements for plant growth, and urea is one of the most frequently used nitrogen fertilizers worldwide. Besides the exogenously‐supplied urea to the soil, urea is endogenously synthesized during secondary nitrogen metabolism. Here, we investigated the contribution of a urea transporter, DUR3, to rice production using a reverse genetic approach combined with localization studies. Tos17 insertion lines for DUR3 showed a 50% yield reduction in hydroponic culture, and a 26.2% yield reduction in a paddy field, because of decreased grain filling. Because shoot biomass production and shoot total N was not reduced, insertion lines were disordered not only in nitrogen acquisition but also in nitrogen allocation. During seed development, DUR3 insertion lines accumulated nitrogen in leaves and could not sufficiently develop their panicles, although shoot and root dry weights were not significantly different from the wild‐type. The urea concentration in old leaf harvested from DUR3 insertion lines was lower than that in wild‐type. DUR3 promoter‐dependent β‐glucuronidase (GUS) activity was localized in vascular tissue and the midribs of old leaves. These results indicate that DUR3 contributes to nitrogen translocation and rice yield under nitrogen‐deficient and field conditions.  相似文献   
109.
Toxoplasma gondii can differentiate into tachyzoites or bradyzoites. To accelerate the investigation of bradyzoite differentiation mechanisms, we constructed a reporter parasite, PLK/DLUC_1C9, for a high-throughput assay. PLK/DLUC_1C9 expressed firefly luciferase under the bradyzoite-specific BAG1 promoter. Firefly luciferase activity was detected with a minimum of 102 parasites induced by pH 8.1. To normalize bradyzoite differentiation, PLK/DLUC_1C9 expressed Renilla luciferase under the parasite’s α-tubulin promoter. Renilla luciferase activity was detected with at least 102 parasites. By using PLK/DLUC_1C9 with this 96-well format screening system, we found that the protein kinase inhibitor analogs, bumped kinase inhibitors 1NM-PP1, 3MB-PP1, and 3BrB-PP1, had bradyzoite-inducing effects.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号